Material Detail

Semi-automatic rule construction for semantic linking of relation arguments

Semi-automatic rule construction for semantic linking of relation arguments

This video was recorded at Slovenian KDD Conference on Data Mining and Data Warehouses (SiKDD), Ljubljana 2013. In this paper, we propose an iterative semi-automatic approach for linking textual arguments of relations to their semantic form using rules. Textual arguments are completely decomposed – every word is considered. They are composed back into semantic form using functions, which bring additional semantic information. The process starts with an initial set of seed rules, which can be obtained automatically. In each iteration, the user constructs new rules using the recommendations, which are calculated based on the frequency statistics of unlinked textual arguments. Our approach was tested on extraction of roles that people have in organizations. The results show that only 31 human crafted rules are needed to link more than 3400 additional arguments. We also show that combining rules have positive effects. The number of linked arguments grows super-linearly with respect to the number of patterns.

Quality

  • User Rating
  • Comments
  • Learning Exercises
  • Bookmark Collections
  • Course ePortfolios
  • Accessibility Info

More about this material

Comments

Log in to participate in the discussions or sign up if you are not already a MERLOT member.