Material Detail

Fluid dynamics models for low rank discriminant analysis

Fluid dynamics models for low rank discriminant analysis

This video was recorded at 13th International Conference on Artificial Intelligence and Statistics (AISTATS), Sardinia 2010. We consider the problem of reducing the dimensionality of labeled data for classification. Unfortunately, the optimal approach of finding the low-dimensional projection with minimal Bayes classification error is intractable, so most standard algorithms optimize a tractable heuristic function in the projected subspace. Here, we investigate a physics-based model where we consider the labeled data as interacting fluid distributions. We derive the forces arising in the fluids from information theoretic potential functions, and consider appropriate low rank constraints on the resulting acceleration and velocity flow fields. We show how to apply the Gauss principle of least constraint in fluids to obtain tractable solutions for low rank projections. Our fluid dynamic approach is demonstrated to better approximate the Bayes optimal solution on Gaussian systems, including infinite dimensional Gaussian processes.

Quality

  • User Rating
  • Comments
  • Learning Exercises
  • Bookmark Collections
  • Course ePortfolios
  • Accessibility Info

More about this material

Comments

Log in to participate in the discussions or sign up if you are not already a MERLOT member.