Material Detail

Improved Nystrom Low-Rank Approximation and Error Analysis

Improved Nystrom Low-Rank Approximation and Error Analysis

This video was recorded at 25th International Conference on Machine Learning (ICML), Helsinki 2008. Low-rank matrix approximation is an effective tool in alleviating the memory and computational burdens of kernel methods and sampling, as the mainstream of such algorithms, has drawn considerable attention in both theory and practice. This paper presents detailed studies on the Nystrom sampling scheme and in particular, an error analysis that directly relates the Nystrom approximation quality with the encoding powers of the landmark points in summarizing the data. The resultant error bound suggests a simple and efficient sampling scheme, the k-means clustering algorithm, for Nystrom low-rank approximation. We compare it with state-of-the-art approaches that range from greedy schemes to probabilistic sampling. Our algorithm achieves significant performance gains in a number of supervised/unsupervised learning tasks including kernel PCA and least squares SVM.

Quality

  • User Rating
  • Comments
  • Learning Exercises
  • Bookmark Collections
  • Course ePortfolios
  • Accessibility Info

More about this material

Comments

Log in to participate in the discussions or sign up if you are not already a MERLOT member.