Material Detail

Efficient Regression for Computational Photography: from Color Management to Omnidirectional Superresolution

Efficient Regression for Computational Photography: from Color Management to Omnidirectional Superresolution

This video was recorded at NIPS Workshops, Sierra Nevada 2011. Many computational photography applications can be framed as low-dimensional regression problems that require fast evaluation of test samples for rendering. In such cases, storing samples on a grid or lattice that can be quickly interpolated is often a practical approach. We show how to optimally solve for such a lattice given non-lattice data points. The resulting lattice regression is fast and accurate. We demonstrate its usefulness for two applications: color management, and superresolution of omnidirectional images.

Quality

  • User Rating
  • Comments
  • Learning Exercises
  • Bookmark Collections
  • Course ePortfolios
  • Accessibility Info

More about this material

Comments

Log in to participate in the discussions or sign up if you are not already a MERLOT member.