Material Detail

Laplace Maximum Margin Markov Networks

Laplace Maximum Margin Markov Networks

This video was recorded at 25th International Conference on Machine Learning (ICML), Helsinki 2008. Learning sparse Markov networks based on the maximum margin principle remains an open problem in structured prediction. In this paper, we proposed the Laplace max-margin Markov network (LapM3N), and a general class of Bayesian M3N (BM3N) of which the LapM3N is a special case and enjoys a sparse representation. The BM3N is built on a novel Structured Maximum Entropy Discrimination (SMED) formalism, which offers a general framework for combining Bayesian learning and max-margin learning of log-linear models for structured prediction, and it subsumes the unsparsified M3N as a special case. We present an efficient iterative learning algorithm based on variational approximation and existing convex optimization methods employed in M3N. We show that our method outperforms competing ones on both synthetic and real OCR data.

Quality

  • User Rating
  • Comments
  • Learning Exercises
  • Bookmark Collections
  • Course ePortfolios
  • Accessibility Info

More about this material

Comments

Log in to participate in the discussions or sign up if you are not already a MERLOT member.