Material Detail

Improving Maximum Margin Matrix Factorization

Improving Maximum Margin Matrix Factorization

This video was recorded at European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases (ECML PKDD), Antwerp 2008. Collaborative filtering is a popular method for personalizing product recommendations. Maximum Margin Matrix Factorization (MMMF) has been proposed as one successful learning approach to this task and has been recently extended to structured ranking losses. In this paper we discuss a number of extensions to MMMF by introducing offset terms, item dependent regularization and a graph kernel on the recommender graph. We show equivalence between graph kernels and the recent MMMF extensions by Mnih and Salakhutdinov. Experimental evaluation of the introduced extensions showimproved performance over the original MMMF formulation.


  • User Rating
  • Comments
  • Learning Exercises
  • Bookmark Collections
  • Course ePortfolios
  • Accessibility Info

More about this material


Log in to participate in the discussions or sign up if you are not already a MERLOT member.