Material Detail

Efficient Dense 3D Rigid-Body Motion Segmentation in RGB-D Video

Efficient Dense 3D Rigid-Body Motion Segmentation in RGB-D Video

This video was recorded at British Machine Vision Conference (BMVC), Bristol 2013. Motion is a fundamental segmentation cue in video. Many current approaches segment 3D motion in monocular or stereo image sequences, mostly relying on sparse interest points or being dense but computationally demanding. We propose an efficient expectation-maximization (EM) framework for dense 3D segmentation of moving rigid parts in RGB-D video. Our approach segments two images into pixel regions that undergo coherent 3D rigid-body motion. Our formulation treats background and foreground objects equally and poses no further assumptions on the motion of the camera or the objects than rigidness. While our EM-formulation is not restricted to a specific image representation, we supplement it with efficient image representation and registration for rapid segmentation of RGB-D video. In experiments we demonstrate that our approach recovers segmentation and 3D motion at good precision.


  • User Rating
  • Comments
  • Learning Exercises
  • Bookmark Collections
  • Course ePortfolios
  • Accessibility Info

More about this material


Log in to participate in the discussions or sign up if you are not already a MERLOT member.