Material Detail

Unsupervised Object Discovery and Segmentation in Videos

Unsupervised Object Discovery and Segmentation in Videos

This video was recorded at British Machine Vision Conference (BMVC), Bristol 2013. Unsupervised object discovery is the task of finding recurring objects over an unsorted set of images without any human supervision, which becomes more and more important as the amount of visual data grows exponentially. Existing approaches typically build on still images and rely on different prior knowledge to yield accurate results. In contrast, we propose a novel video-based approach, allowing also for exploiting motion information, which is a strong and physically valid indicator for foreground objects, thus, tremendously easing the task. In particular, we show how to integrate motion information in parallel with appearance cues into a common conditional random field formulation to automatically discover object categories from videos. In the experiments, we show that our system can successfully extract, group, and segment most foreground objects and is also able to discover stationary objects in the given videos. Furthermore, we demonstrate that the unsupervised learned appearance models also yield reasonable results for object detection on still images.


  • User Rating
  • Comments
  • Learning Exercises
  • Bookmark Collections
  • Course ePortfolios
  • Accessibility Info

More about this material


Log in to participate in the discussions or sign up if you are not already a MERLOT member.