Material Detail

Classification on Riemannian Manifolds

Classification on Riemannian Manifolds

This video was recorded at Joint IAPR International Workshops on Structural and Syntactic Pattern Recognition (SSPR) and Statistical Techniques in Pattern Recognition (SPR), Cesme 2010. A large number of natural phenomena can be formulated as inference on differentiable manifolds. More specifically in computer vision, such underlying notions emerge in feature selection, pose estimation, structure from motion, appearance tracking, and shape embedding. Unlike the uniform Euclidean space, differentiable manifolds exhibit local homeomorphism, thus, the differential geometry is applicable only within local tangent spaces. This prevents incorporation of conventional methods that require vector norms into the classification problems on manifolds where distances are defined through the curves of minimal length connecting two points. Recently we introduced a region covariance descriptor that exhibits a Riemannian manifold structure on positive definite matrices. By imposing weak classifiers on tangent spaces and establishing weighted sums via Karcher means, we bootstrap an ensemble of boosted classifiers with logistic loss functions. In this manner, we do not need to flatten the manifold or discover its topology. We demonstrate the new manifold classifiers on human detection and face recognition problems.


  • User Rating
  • Comments
  • Learning Exercises
  • Bookmark Collections
  • Course ePortfolios
  • Accessibility Info

More about this material


Log in to participate in the discussions or sign up if you are not already a MERLOT member.