Material Detail

Deep-er Kernels

Deep-er Kernels

This video was recorded at International Workshop on Advances in Regularization, Optimization, Kernel Methods and Support Vector Machines (ROKS): theory and applications, Leuven 2013. Kernels can be viewed as shallow in that learning is only applied in a single (output) layer. Recent successes with deeper networks highlight the need to consider richer function classes. The talk will review and discuss methods that have been developed to enable richer kernel classes to be learned. While some of these methods rely on greedy procedures many are supported by statistical learning analyses and/or convergence bounds. The talk will highlight the potential for further research on this topic.


  • User Rating
  • Comments
  • Learning Exercises
  • Bookmark Collections
  • Course ePortfolios
  • Accessibility Info

More about this material


Log in to participate in the discussions or sign up if you are not already a MERLOT member.