Material Detail

Enhancing Graph Database Indexing By Suffix Tree Structure

Enhancing Graph Database Indexing By Suffix Tree Structure

This video was recorded at 5th IAPR International Conference on Pattern Recognition in Bioinformatics, Nijmegen 2010. Biomedical and chemical databases are large and rapidly growing in size. Graphs naturally model such kinds of data. To fully exploit the wealth of information in these graph databases, scientists require systems that search for all occurrences of a query graph. To deal efficiently with graph searching, advanced methods for indexing, representation and matching of graphs have been proposed. This paper presents GraphGrepSX. The system implements efficient graph searching algorithms together with an advanced filtering technique. GraphGrepSX is compared with SING, GraphFind, CTree and GCoding. Experiments show that GraphGrepSX outperforms the compared systems on a very large collection of molecular data. In particular, it reduces the size and the time for the construction of large database index and outperforms the most popular systems.


  • User Rating
  • Comments
  • Learning Exercises
  • Bookmark Collections
  • Course ePortfolios
  • Accessibility Info

More about this material


Log in to participate in the discussions or sign up if you are not already a MERLOT member.