Material Detail

Robustness and Regularization of Support Vector Machines

Robustness and Regularization of Support Vector Machines

This video was recorded at NIPS Workshop on Optimization for Machine Learning, Whistler 2008. We consider a robust classification problem and show that standard regularized SVM is a special case of our formulation, providing an explicit link between reg- ularization and robustness. At the same time, the physical connection of noise and robustness suggests the potential for a broad new family of robust classification algorithms. Finally, we show that robustness is a fundamental property of classi- fication algorithms, by re-proving consistency of support vector machines using only robustness arguments (instead of VC dimension or stability).

Quality

  • User Rating
  • Comments
  • Learning Exercises
  • Bookmark Collections
  • Course ePortfolios
  • Accessibility Info

More about this material

Comments

Log in to participate in the discussions or sign up if you are not already a MERLOT member.