Material Detail

Steppest descent analysis for unregularized linear prediction with strictly convex penalties

Steppest descent analysis for unregularized linear prediction with strictly convex penalties

This video was recorded at NIPS Workshops, Sierra Nevada 2011. This manuscript presents a convergence analysis, generalized from a study of boosting, of unregularized linear prediction. Here the empirical risk — incorporating strictly convex penalties composed with a linear term — may fail to be strongly convex, or even attain a minimizer. This analysis is demonstrated on linear regression, decomposable objectives, and boosting.... Show More

Quality

  • User Rating
  • Comments
  • Learning Exercises
  • Bookmark Collections
  • Course ePortfolios
  • Accessibility Info

More about this material

Comments

Log in to participate in the discussions or sign up if you are not already a MERLOT member.