Material Detail

Discovering Latent Structure in Clinical Databases

Discovering Latent Structure in Clinical Databases

This video was recorded at NIPS Workshops, Sierra Nevada 2011. Statistical relational learning allows algorithms to simultaneously reason about complex structure and uncertainty with a given domain. One common challenge when analyzing these domains is the presence of latent structure within the data. We present a novel algorithm that automatically groups together different objects in a domain in order to uncover latent structure, including a hierarchy or even heterarchy. We empirically evaluate our algorithm on two large real-world tasks where the goal is to predict whether a patient will have an adverse reaction to a medication. We found that the proposed approach produced a more accurate model than the baseline approach. Furthermore, we found interesting latent structure that was deemed to be relevant and interesting by a medical collaborator.

Quality

  • User Rating
  • Comments
  • Learning Exercises
  • Bookmark Collections
  • Course ePortfolios
  • Accessibility Info

More about this material

Comments

Log in to participate in the discussions or sign up if you are not already a MERLOT member.