Material Detail

Learning and Inference in Low-Level Vision

Learning and Inference in Low-Level Vision

This video was recorded at 23rd Annual Conference on Neural Information Processing Systems (NIPS), Vancouver 2009. Low level vision addresses the issues of labeling and organizing image pixels according to scene related properties - such as motion, contrast, depth and reflectance. I will describe our attempts to understand low-level vision in humans and machines as optimal inference given the statistics of the world. If time permits, I will discuss my favorite NIPS rejected papers. Yair Weiss is an Associate Professor at the Hebrew University School of Computer Science and Engineering. He received his Ph.D. from MIT working with Ted Adelson on motion analysis and did postdoctoral work at UC Berkeley. Since 2005 he has been a fellow of the Canadian Institute for Advanced Research. With his students and colleagues he has co-authored award winning papers in NIPS (2002),ECCV (2006), UAI (2008) and CVPR (2009). Slide presentation contains animation videos which can be found at


  • User Rating
  • Comments
  • Learning Exercises
  • Bookmark Collections
  • Course ePortfolios
  • Accessibility Info

More about this material


Log in to participate in the discussions or sign up if you are not already a MERLOT member.