Material Detail

Learning Similarity Metrics with Invariance Properties

Learning Similarity Metrics with Invariance Properties

This video was recorded at NIPS Workshop on Learning to Compare Examples, Whistler 2006. The identification of an effective function to compare examples is essential to several machine learning problems. For instance, retrieval systems entirely depend on such a function to rank the documents with respect to their estimated similarity to the submitted query. Another example is kernel-based algorithms which heavily rely on the choice of an appropriate kernel function. In most cases, the choice of the comparison function (also called, depending on the context and its mathematical properties, distance metric, similarity measure, kernel function or matching measure) is done a-priori, relying on some knowledge/assumptions specific to the task. An alternative to this a-priori selection is to learn a suitable function relying on a set of examples and some of its desired properties. This workshop is aimed at bringing together researchers interested in such a task.


  • User Rating
  • Comments
  • Learning Exercises
  • Bookmark Collections
  • Course ePortfolios
  • Accessibility Info

More about this material


Log in to participate in the discussions or sign up if you are not already a MERLOT member.