Material Detail

The Topic-Perspective Model for Social Tagging Systems

The Topic-Perspective Model for Social Tagging Systems

This video was recorded at 16th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD), Washington 2010. In this paper, we propose a new probabilistic generative model, called Topic-Perspective Model, for simulating the generation process of social annotations. Different from other generative models, in our model, the tag generation process is separated from the content term generation process. While content terms are only generated from resource topics, social tags are generated by resource topics and user perspectives together. The proposed probabilistic model can produce more useful information than any other models proposed before. The parameters learned from this model include: (1) the topical distribution of each document, (2) the perspective distribution of each user, (3) the word distribution of each topic, (4) the tag distribution of each topic, (5) the tag distribution of each user perspective, (6) and the probabilistic of each tag being generated from resource topics or user perspectives. Experimental results show that the proposed model has better generalization performance or tag prediction ability than other two models proposed in previous research.

Quality

  • User Rating
  • Comments
  • Learning Exercises
  • Bookmark Collections
  • Course ePortfolios
  • Accessibility Info

More about this material

Comments

Log in to participate in the discussions or sign up if you are not already a MERLOT member.