Material Detail

Unsupervised Feature Selection for Multi-Cluster Data

Unsupervised Feature Selection for Multi-Cluster Data

This video was recorded at 16th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD), Washington 2010. In many data analysis tasks, one is often confronted with very high dimensional data. Feature selection techniques are designed to find the relevant feature subset of the original features which can facilitate clustering, classification and retrieval. In this paper, we consider the feature selection problem in unsupervised learning scenario, which is particularly difficult due to the absence of class labels that would guide the search for relevant information. The feature selection problem is essentially a combinatorial optimization problem which is computationally expensive. Traditional unsupervised feature selection methods address this issue by selecting the top ranked features based on certain scores computed independently for each feature. These approaches neglect the possible correlation between different features and thus can not produce an optimal feature subset. Inspired from the recent developments on manifold learning and L1-regularized models for subset selection, we propose in this paper a new approach, called {\em Multi-Cluster Feature Selection} (MCFS), for unsupervised feature selection. Specifically, we select those features such that the multi-cluster structure of the data can be best preserved. The corresponding optimization problem can be efficiently solved since it only involves a sparse eigen-problem and a L1-regularized least squares problem. Extensive experimental results over various real-life data sets have demonstrated the superiority of the proposed algorithm.


  • User Rating
  • Comments
  • Learning Exercises
  • Bookmark Collections
  • Course ePortfolios
  • Accessibility Info

More about this material


Log in to participate in the discussions or sign up if you are not already a MERLOT member.