Material Detail

Information Theoretic Regularization for Semi-Supervised Boosting

Information Theoretic Regularization for Semi-Supervised Boosting

This video was recorded at 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD), Paris 2009. We present novel semi-supervised boosting algorithms that incrementally build linear combinations of weak classifiers through generic functional gradient descent using both labeled and unlabeled training data. Our approach is based on extending information regularization framework to boosting, bearing loss functions that combine log loss on labeled data with the information-theoretic measures to encode unlabeled data. Even though the information-theoretic regularization terms make the optimization non-convex, we propose simple sequential gradient descent optimization algorithms, and obtain impressively improved results on synthetic, benchmark and real world tasks over supervised boosting algorithms which use the labeled data alone and a state-of-the-art semi-supervised boosting algorithm.


  • User Rating
  • Comments
  • Learning Exercises
  • Bookmark Collections
  • Course ePortfolios
  • Accessibility Info

More about this material


Log in to participate in the discussions or sign up if you are not already a MERLOT member.