Material Detail

Cartesian Contour: A Concise Representation for a Collection of Frequent Sets

Cartesian Contour: A Concise Representation for a Collection of Frequent Sets

This video was recorded at 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD), Paris 2009. In this paper, we consider a novel scheme referred to as Cartesian contour to concisely represent the collection of frequent itemsets. Different from the existing works, this scheme provides a complete view of these itemsets by covering the entire collection of them. More interestingly, it takes a first step in deriving a generative view of the frequent pattern formulation, i.e., how a small number of patterns interact with each other and produce the complexity of frequent itemsets. We perform a theoretical investigation of the concise representation problem and link it to the biclique set cover problem and prove its NP-hardness. We develop a novel approach utilizing the technique developed in frequent itemset mining, set cover, and max k-cover to approximate the minimal biclique set cover problem. In addition, we consider several heuristic techniques to speedup the construction of Cartesian contour. The detailed experimental study demonstrates the effectiveness and efficiency of our approach.

Quality

  • User Rating
  • Comments
  • Learning Exercises
  • Bookmark Collections
  • Course ePortfolios
  • Accessibility Info

More about this material

Comments

Log in to participate in the discussions or sign up if you are not already a MERLOT member.