Material Detail

Learning Bayesian Networks

Learning Bayesian Networks

This video was recorded at 13th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD), San Jose 2007. Bayesian networks are graphical structures for representing the probabilistic relationships among a large number of variables and doing probabilistic inference with those variables. The 1990's saw the emergence of excellent algorithms for learning Bayesian networks from passive data. I will discuss the constraint-based learning method using an intuitive approach that concentrates on causal learning. Then I will discuss the Bayesian approach with some simple examples. I will show how, using the Bayesian approach, we can even learning something about causal influences from passive data on two variables. Finally, I will show some applications to finance and marketing.


  • User Rating
  • Comments
  • Learning Exercises
  • Bookmark Collections
  • Course ePortfolios
  • Accessibility Info

More about this material


Log in to participate in the discussions or sign up if you are not already a MERLOT member.