Material Detail

Large scale fuzzy pD* Reasonig using map reduce

Large scale fuzzy pD* Reasonig using map reduce

This video was recorded at 10th International Semantic Web Conference (ISWC), Bonn 2011. The MapReduce framework has proved to be very efficient for data-intensive tasks. Earlier work has tried to use MapReduce for large scale reasoning for pD∗ semantics and has shown promising results. In this paper, we move a step forward to consider scalable reasoning on top of semantic data under fuzzy pD∗ semantics (i.e., an extension of OWL pD∗ semantics with fuzzy vagueness). To the best of our knowledge, this is the first work to investigate how MapReduce can help to solve the scalability issue of fuzzy OWL reasoning. While most of the optimizations used by the existing MapReduce framework for pD∗ semantics are also applicable for fuzzy pD∗ semantics, unique challenges arise when we handle the fuzzy information. We identify these key challenges, and propose a solution for tackling each of them. Furthermore, we implement a prototype system for the evaluation purpose. The experimental results show that the running time of our system is comparable with that of WebPIE, the state-of-the-art inference engine for scalable reasoning in pD∗ semantics.

Quality

  • User Rating
  • Comments
  • Learning Exercises
  • Bookmark Collections
  • Course ePortfolios
  • Accessibility Info

More about this material

Comments

Log in to participate in the discussions or sign up if you are not already a MERLOT member.