Material Detail

RELIN: Relatedness and Informativeness-based Centrality for Entity Summarization

RELIN: Relatedness and Informativeness-based Centrality for Entity Summarization

This video was recorded at 10th International Semantic Web Conference (ISWC), Bonn 2011. Linked Data is developing towards a large, global repository for structured, interlinked descriptions of real-world entities. An emerging problem in many Web applications making use of data like Linked Data is how a lengthy description can be tailored to the task of quickly identifying the underlying entity. As a solution to this novel problem of entity summarization, we propose RELIN, a variant of the random surfer model that leverages the relatedness and informativeness of description elements for ranking. We present an implementation of this conceptual model, which captures the semantics of description elements based on linguistic and information theory concepts. In experiments involving real-world data sets and users, our approach outperforms the baselines, producing summaries that better match handcrafted ones and further, shown to be useful in a concrete task.

Quality

  • User Rating
  • Comments
  • Learning Exercises
  • Bookmark Collections
  • Course ePortfolios
  • Accessibility Info

More about this material

Comments

Log in to participate in the discussions or sign up if you are not already a MERLOT member.