Material Detail

Uniting "a priori" and "a posteriori" knowledge: A research framework

Uniting "a priori" and "a posteriori" knowledge: A research framework

This video was recorded at 21st International Joint Conference on Artificial Intelligence (IJCAI), Pasadena. The ability to perform machine classification is a critical component of an intelligent system. We propose to unite the logical, a priori approach to this problem with the empirical, a posteriori approach. We describe in particular how the a priori knowledge encoded in Cyc can be merged with technology for probabilistic inference using Markov logic networks. We describe two problem domains – the Whodunit Problem and noun phrase understanding – and show that Cyc's commonsense knowledge can be fruitfully combined with probabilistic reasoning.

Quality

  • User Rating
  • Comments
  • Learning Exercises
  • Bookmark Collections
  • Course ePortfolios
  • Accessibility Info

More about this material

Comments

Log in to participate in the discussions or sign up if you are not already a MERLOT member.