Material Detail

On probabilistic hypergraph matching

On probabilistic hypergraph matching

This video was recorded at 27th International Conference on Machine Learning (ICML), Haifa 2010. We consider the problem of finding a matching between two sets of features, given complex relations among them, going beyond pairwise. We derive the hyper-graph matching problem in a probabilistic setting represented by a convex optimization. First, we formalize a soft matching criterion that emerges from a probabilistic interpretation of the problem input and output, as opposed to previous methods that treat soft matching as a mere relaxation of the hard matching problem. Second, the model induces an algebraic relation between the hyper-edge weight matrix and the desired vertex-to-vertex probabilistic matching. Third, the model explains some of the graph matching normalization proposed in the past on a heuristic basis such as doubly stochastic normalizations of the edge weights. A key benefit of the model is that the global optimum of the matching criteria can be found via an iterative successive projection algorithm. The algorithm reduces to the well known Sinkhorn row/column matrix normalization procedure in the special case when the two graphs have the same number of vertices and a complete matching is desired. Another benefit of our model is the straightforward scalability from graphs to hyper-graphs. The work was done with Ron Zass (and made its debut in CVPR 2008)


  • User Rating
  • Comments
  • Learning Exercises
  • Bookmark Collections
  • Course ePortfolios
  • Accessibility Info

More about this material


Log in to participate in the discussions or sign up if you are not already a MERLOT member.