Material Detail

Discovering Options from Example Trajectories

Discovering Options from Example Trajectories

This video was recorded at 26th International Conference on Machine Learning (ICML), Montreal 2009. We present a novel technique for automated problem decomposition to address the problem of scalability in Reinforcement Learning. Our technique makes use of a set of near-optimal trajectories to discover {\it options} and incorporates them into the learning process, dramatically reducing the time it takes to solve the underlying problem. We run a series of experiments in two different domains and show that our method offers up to 30 fold speedup over the baseline.

Quality

  • User Rating
  • Comments
  • Learning Exercises
  • Bookmark Collections
  • Course ePortfolios
  • Accessibility Info

More about this material

Comments

Log in to participate in the discussions or sign up if you are not already a MERLOT member.