Material Detail

PAC-Bayesian Learning of Linear Classifiers

PAC-Bayesian Learning of Linear Classifiers

This video was recorded at 26th International Conference on Machine Learning (ICML), Montreal 2009. We present a general PAC-Bayes theorem from which all known PAC-Bayes bounds are simply obtained as particular cases. We also propose different learning algorithms for finding linear classifiers that minimize these PAC-Bayes risk bounds. These learning algorithms are generally competitive with both AdaBoost and the SVM.... Show More


  • User Rating
  • Comments
  • Learning Exercises
  • Bookmark Collections
  • Course ePortfolios
  • Accessibility Info

More about this material


Log in to participate in the discussions or sign up if you are not already a MERLOT member.