Material Detail

Poster Spotlights: Hierarchical Skill Learning for High-Level Planning

Poster Spotlights: Hierarchical Skill Learning for High-Level Planning

This video was recorded at 26th International Conference on Machine Learning (ICML), Montreal 2009. We present skill bootstrapping, a proposed new research direction for agent learning and planning that allows an agent to start with low-level primitive actions, and develop skills that can be used for higher-level planning. Skills are developed over the course of solving many different problems in a domain, using reinforcement learning techniques to complement the benefits and disadvantages of heuristic-search planning. We describe the overall architecture of the proposed approach, discuss how it relates to other work, and give motivating examples for why this approach would be successful.

Quality

  • User Rating
  • Comments
  • Learning Exercises
  • Bookmark Collections
  • Course ePortfolios
  • Accessibility Info

More about this material

Comments

Log in to participate in the discussions or sign up if you are not already a MERLOT member.