Material Detail

Boosting with Structural Sparsity

Boosting with Structural Sparsity

This video was recorded at 26th International Conference on Machine Learning (ICML), Montreal 2009. We derive generalizations of AdaBoost and related gradient-based coordinate descent methods that incorporate sparsity-promoting penalties for the norm of the predictor that is being learned. The end result is a family of coordinate descent algorithms that integrate forward feature induction and back-pruning through regularization and give an automatic stopping criterion for feature induction. We study penalties based on the ℓ1 , ℓ2 , and ℓ ∞ norms of the predictor and introduce mixed-norm penalties that build upon the initial penalties. The mixed-norm regularizers facilitate structural sparsity in parameter space, which is a useful property in multiclass prediction and other related tasks. We report empirical results that demonstrate the power of our approach in building accurate and structurally sparse models.


  • User Rating
  • Comments
  • Learning Exercises
  • Bookmark Collections
  • Course ePortfolios
  • Accessibility Info

More about this material


Log in to participate in the discussions or sign up if you are not already a MERLOT member.