Material Detail
Bayesian Multiple Instance Learning: Automatic Feature Selection and Inductive Transfer
This video was recorded at 25th International Conference on Machine Learning (ICML), Helsinki 2008. We propose a novel Bayesian multiple instance learning algorithm. This algorithm automatically identifies the relevant feature subset, and utilizes inductive transfer when learning multiple (conceptually related) classifiers. Experimental results indicate that the proposed baseline MIL method is more accurate than previous MIL algorithms and selects a much smaller set of useful features. Inductive transfer further improves the accuracy of the classifier as compared to learning each task individually.
Quality
- User Rating
- Comments
- Learning Exercises
- Bookmark Collections
- Course ePortfolios
- Accessibility Info