Material Detail

Spectral Clustering with Inconsistent Advice

Spectral Clustering with Inconsistent Advice

This video was recorded at 25th International Conference on Machine Learning (ICML), Helsinki 2008. Clustering with advice (often known as constrained clustering) has been a recent focus of the data mining community. Success has been achieved incorporating advice into the k-means framework, as well as spectral clustering. Although the theory community has explored inconsistent advice, it has not yet been incorporated into spectral clustering. Extending work of De Bie and Cristianini, we set out a framework for finding minimum normalized cuts, subject to inconsistent advice. Our results suggest that the framework will be successful in many situations.

Quality

  • User Rating
  • Comments
  • Learning Exercises
  • Bookmark Collections
  • Course ePortfolios
  • Accessibility Info

More about this material

Comments

Log in to participate in the discussions or sign up if you are not already a MERLOT member.