Material Detail

Graph-based Methods for Retinal Mosaicing and Vascular Characterization

Graph-based Methods for Retinal Mosaicing and Vascular Characterization

This video was recorded at 6th IAPR - TC-15 Workshop on Graph-based Representations in Pattern Recognition (GbR), Alicante 2007. In this paper, we propose a highly robust point-matching method (Graph Transformation Matching - GTM) relying on finding the consensus graph emerging from putative matches. Such method is a two- phased one in the sense that after finding the consensus graph it tries to complete it as much as possible. We successfully apply GTM to image registration in the context of finding mosaics from retinal images. Feature points are obtained after properly segmenting such images. In addition, we also introduce a novel topological descriptor for quantifying disease by characterizing the arterial/venular trees. Such descriptor relies on diffusion kernels on graphs. Our experiments have showed only statistical signifficance for the case of arterial trees, which is consistent with previous findings.

Quality

  • User Rating
  • Comments
  • Learning Exercises
  • Bookmark Collections
  • Course ePortfolios
  • Accessibility Info

More about this material

Comments

Log in to participate in the discussions or sign up if you are not already a MERLOT member.