Material Detail

Pay-as-you-go Approximate Join Top-k Processing for the Web of Data

Pay-as-you-go Approximate Join Top-k Processing for the Web of Data

This video was recorded at 11th Extended Semantic Web Conference (ESWC), Crete 2014. For effectively searching the Web of data, ranking of results is a crucial. Top-k processing strategies have been proposed to allow an efficient processing of such ranked queries. Top-k strategies aim at computing k top-ranked results without complete result materialization. However, for many applications result computation time is much more important than result accuracy and completeness. Thus, there is a strong need for approximated ranked results. Unfortunately, previous work on approximate top-k processing is not well-suited for the Web of data. In this paper, we propose the first approximate top-k join framework for Web data and queries. Our approach is very lightweight necessary statistics are learned at runtime in a pay-as-you-go manner. We conducted extensive experiments on state-of-art SPARQL benchmarks. Our results are very promising: we could achieve up to 65% time savings, while maintaining a high precision/recall.

Quality

  • User Rating
  • Comments
  • Learning Exercises
  • Bookmark Collections
  • Course ePortfolios
  • Accessibility Info

More about this material

Comments

Log in to participate in the discussions or sign up if you are not already a MERLOT member.