Material Detail

ReduCE: A Reduced Coulomb Energy Network Method for Approximate Classification

ReduCE: A Reduced Coulomb Energy Network Method for Approximate Classification

This video was recorded at 6th Annual European Semantic Web Conference (ESWC), Hersonissos 2009. In order to overcome the limitations of the purely deductive approaches to query answering from ontologies, inductive (instance-based) methods have been proposed as efficient and noise-tolerant tools. In this paper we propose an original approach based on non-parametric learning: the Reduced Coulomb Energy Network classifier. The method requires a limited training effort (more than nearest neighbor yet less than kernel machines) but can turn out to be very effective in the classification phase.Casting retrieval as the problem of assessing class-memberships w.r.t. the query concepts, we propose an extension of classification algorithm using a Reduced Coulomb Energy Network based on an entropic similarity measure for OWL. Experimentally we show that the behavior of the classifier is comparable with the one of a standard reasoner and is often more efficient than with other inductive approaches. Moreover we show that new knowledge (not logically derivable) is induced.

Quality

  • User Rating
  • Comments
  • Learning Exercises
  • Bookmark Collections
  • Course ePortfolios
  • Accessibility Info

More about this material

Comments

Log in to participate in the discussions or sign up if you are not already a MERLOT member.