Material Detail

Fast Support Vector Machines for Structural Kernels

Fast Support Vector Machines for Structural Kernels

This video was recorded at European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases (ECML PKDD), Athens 2011. In this paper, we propose three important enhancements of the approximate cutting plane algorithm (CPA) to train Support Vector Machines with structural kernels: (i) we exploit a compact yet exact representation of cutting plane models using directed acyclic graphs to speed up both training and classification, (ii) we provide a parallel implementation, which makes the training scale almost linearly with the number of CPUs, and (iii) we propose an alternative sampling strategy to handle class-imbalanced problem and show that theoretical convergence bounds are preserved. The experimental evaluations on three diverse datasets demonstrate the soundness of our approach and the possibility to carry out fast learning and classification with structural kernels.


  • User Rating
  • Comments
  • Learning Exercises
  • Bookmark Collections
  • Course ePortfolios
  • Accessibility Info

More about this material


Log in to participate in the discussions or sign up if you are not already a MERLOT member.