Material Detail

Abductive Plan Recognition by Extending Bayesian Logic Programs

Abductive Plan Recognition by Extending Bayesian Logic Programs

This video was recorded at European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases (ECML PKDD), Athens 2011. Plan recognition is the task of predicting an agent's top-level plans based on its observed actions. It is an abductive reasoning task that involves inferring cause from effect. Most existing approaches to plan recognition use either first-order logic or probabilistic graphical models. While the former cannot handle uncertainty, the latter cannot handle structured representations. In order to overcome these limitations, we develop an approach to plan recognition using Bayesian Logic Programs (BLPs), which combine first-order logic and Bayesian networks. Since BLPs employ logical deduction to construct the networks, they cannot be used effectively for plan recognition. Therefore, we extend BLPs to use logical abduction to construct Bayesian networks and call the resulting model Bayesian Abductive Logic Programs (BALPs). We learn the parameters in BALPs using the Expectation Maximization algorithm adapted for BLPs. Finally, we present an experimental evaluation of BALPs on three benchmark data sets and compare its performance with the state-of-the-art for plan recognition.

Quality

  • User Rating
  • Comments
  • Learning Exercises
  • Bookmark Collections
  • Course ePortfolios
  • Accessibility Info

More about this material

Comments

Log in to participate in the discussions or sign up if you are not already a MERLOT member.