Material Detail
Two-Way Analysis of High-Dimensional Collinear Data
This video was recorded at European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases (ECML PKDD), Bled 2009. We present a Bayesian model for two-way ANOVA-type analysis of high-dimensional, small sample-size datasets with highly correlated groups of variables. Modern cellular measurement methods are a main application area; typically the task is differential analysis between diseased and healthy samples, complicated by additional covariates requiring a multi-way analysis. The main complication is the combination of high dimensionality and low sample size, which renders classical multivariate techniques useless. We introduce a hierarchical model which does dimensionality reduction by assuming that the input variables come in similarly-behaving groups, and performs an ANOVA-type decomposition for the set of reduced-dimensional latent variables. We apply the methods to study lipidomic profiles of a recent large-cohort human diabetes study.
Quality
- User Rating
- Comments
- Learning Exercises
- Bookmark Collections
- Course ePortfolios
- Accessibility Info