Material Detail

Exceptional Model Mining

Exceptional Model Mining

This video was recorded at European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases (ECML PKDD), Antwerp 2008. In most databases, it is possible to identify small partitions of the data where the observed distribution is notably different from that of the database as a whole. In classical subgroup discovery, one considers the distribution of a single nominal attribute, and exceptional subgroups show a surprising increase in the occurrence of one of its values. In this paper, we introduce Exceptional Model Mining (EMM), a framework that allows for more complicated target concepts. Rather than finding subgroups based on the distribution of a single target attribute, EMM finds subgroups where a model fitted to that subgroup is somehow exceptional. We discuss regression as well as classification models, and define quality measures that determine how exceptional a given model on a subgroup is. Our framework is general enough to be applied to many types of models, even from other paradigms such as association analysis and graphical modeling.

Quality

  • User Rating
  • Comments
  • Learning Exercises
  • Bookmark Collections
  • Course ePortfolios
  • Accessibility Info

More about this material

Comments

Log in to participate in the discussions or sign up if you are not already a MERLOT member.