Material Detail

A Semi-fuzzy approach for online divisive-agglomerative clustering

A Semi-fuzzy approach for online divisive-agglomerative clustering

This video was recorded at European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases (ECML PKDD), Warsaw 2007. The Online Divisive-Agglomerative Clustering (ODAC) is an incremental approach for clustering streaming time series using a hierarchical procedure over time. It constructs a tree-like hierarchy of clusters of streams, using a top-down strategy based on the correlation between streams. The system also possesses an agglomerative phase to enhance a dynamic behavior capable of structural change detection. However, the split decision used in the algorithm focus on the crisp boundary between two groups, which implies a high risk since it has to decide based on only a small subset of the entire data. In this work we propose a semi-fuzzy approach to the assignment of variables to newly created clusters, for a better trade-off between validity and performance. Experimental work supports the benefits of our approach.

Quality

  • User Rating
  • Comments
  • Learning Exercises
  • Bookmark Collections
  • Course ePortfolios
  • Accessibility Info

More about this material

Comments

Log in to participate in the discussions or sign up if you are not already a MERLOT member.