Material Detail

Diverse M-Best Solutions in Markov Random Fields

Diverse M-Best Solutions in Markov Random Fields

This video was recorded at 12th European Conference on Computer Vision (ECCV), Firenze 2012. Much effort has been directed at algorithms for obtaining the highest probability (MAP) configuration in probabilistic (random field) models. In many situations, one could benefit from additional high probability solutions. Current methods for computing the M most probable configurations produce solutions that tend to be very similar to the MAP solution and each other. This is often an undesirable property. In this paper we propose an algorithm for the Diverse MBest problem, which involves finding a diverse set of highly probable solutions under a discrete probabilistic model. Given a dissimilarity function measuring closeness of two solutions, our formulation involves maximizing a linear combination of the probability and dissimilarity to previous solutions. Our formulation generalizes the MBest MAP problem and we show that for certain families of dissimilarity functions we can guarantee that these solutions can be found as easily as the MAP solution.

Quality

  • User Rating
  • Comments
  • Learning Exercises
  • Bookmark Collections
  • Course ePortfolios
  • Accessibility Info

More about this material

Comments

Log in to participate in the discussions or sign up if you are not already a MERLOT member.