Material Detail

Anomaly Detection in Crowded Scenes

Anomaly Detection in Crowded Scenes

This video was recorded at 23rd IEEE Conference on Computer Vision and Pattern Recognition 2010 - San Francisco. A novel framework for anomaly detection in crowded scenes is presented. Three properties are identified as important for the design of a localized video representation suitable for anomaly detection in such scenes: 1) joint modeling of appearance and dynamics of the scene, and the abilities to detect 2) temporal, and 3) spatial abnormalities. The model for normal crowd behavior is based on mixtures of dynamic textures and outliers under this model are labeled as anomalies. Temporal anomalies are equated to events of low-probability, while spatial anomalies are handled using discriminant saliency. An experimental evaluation is conducted with a new dataset of crowded scenes, composed of 100 video sequences and five well defined abnormality categories. The proposed representation is shown to outperform various state of the art anomaly detection techniques.

Quality

  • User Rating
  • Comments
  • Learning Exercises
  • Bookmark Collections
  • Course ePortfolios
  • Accessibility Info

More about this material

Comments

Log in to participate in the discussions or sign up if you are not already a MERLOT member.