Material Detail

Mixed Regression: Minimax Optimal Rates

Mixed Regression: Minimax Optimal Rates

This video was recorded at 27th Annual Conference on Learning Theory (COLT), Barcelona 2014. We consider the mixed regression problem with two components, under adversarial and stochastic noise. We give a convex optimization formulation that provably recovers the true solution, and provide upper bounds on the recovery errors for both arbitrary noise and stochastic noise settings. We also give matching minimax lower bounds (up to log factors), showing that under certain assumptions, our algorithm is information-theoretically optimal. Our results represent the first (and currently only known) tractable algorithm guaranteeing successful recovery with tight bounds on recovery errors and sample complexity.

Quality

  • User Rating
  • Comments
  • Learning Exercises
  • Bookmark Collections
  • Course ePortfolios
  • Accessibility Info

More about this material

Comments

Log in to participate in the discussions or sign up if you are not already a MERLOT member.