Material Detail

On the Statistics and Predictability of Go-Arounds

On the Statistics and Predictability of Go-Arounds

This video was recorded at NASA Conference on Intelligent Data Understanding (CIDU) 2011, Mountain View, CA. This paper takes an empirical approach to identify operational factors at busy airports that may predate go-around maneuvers. Using four years of data from San Francisco International Airport, we begin our investigation with an analysis of sequence of landing aircraft that may increase the probability of go-around occurrence. Then we take a statistical approach to investigate which features of airborne, ground operations (e.g., number of inbound aircraft, number of aircraft taxiing from gate, etc.) or weather are most likely to fluctuate, relative to nominal operations, in the minutes immediately preceding a missed approach. We analyze these findings both in terms of their implication on current airport operations and discuss how the antecedent factors may affect NextGen. Finally, as a means to assist air traffic controllers, we draw upon techniques from the machine learning community to develop a preliminary alert system for go-around prediction.

Quality

  • User Rating
  • Comments
  • Learning Exercises
  • Bookmark Collections
  • Course ePortfolios
  • Accessibility Info

More about this material

Comments

Log in to participate in the discussions or sign up if you are not already a MERLOT member.