Material Detail

Multi-view Body Part Recognition with Random Forests

Multi-view Body Part Recognition with Random Forests

This video was recorded at British Machine Vision Conference (BMVC), Bristol 2013. This paper addresses the problem of human pose estimation, given images taken from multiple dynamic but calibrated cameras. We consider solving this task using a part-based model and focus on the part appearance component of such a model. We use a random forest classifier to capture the variation in appearance of body parts in 2D images. The result of these 2D part detectors are then aggregated across views to produce consistent 3D hypotheses for parts. We solve correspondences across views for mirror symmetric parts by introducing a latent variable. We evaluate our part detectors qualitatively and quantitatively on a dataset gathered from a professional football game.

Quality

  • User Rating
  • Comments
  • Learning Exercises
  • Bookmark Collections
  • Course ePortfolios
  • Accessibility Info

More about this material

Comments

Log in to participate in the discussions or sign up if you are not already a MERLOT member.