Material Detail

Empirical Portfolio Selection

Empirical Portfolio Selection

This video was recorded at International Workshop on Advances in Machine Learning for Computational Finance (AMLCF), London 2009. Dark pools are a relatively recent type of equities exchange in which transparency is deliberately limited in order to minimize the market impact of large-volume trades. The success and proliferation of dark pools has also led to a challenging and interesting problem in algorithmic trading --- namely, optimizing the distribution of a large trade over multiple competing dark pools. In this work we formalize this as a problem of multi-venue exploration from censored data, and provide a provably efficient and near-optimal algorithm for its solution. This algorithm and its analysis has much in common with well-studied algorithms for exploration-exploitation in reinforcement learning, and is evaluated on dark pool execution data from a large brokerage.

Quality

  • User Rating
  • Comments
  • Learning Exercises
  • Bookmark Collections
  • Course ePortfolios
  • Accessibility Info

More about this material

Comments

Log in to participate in the discussions or sign up if you are not already a MERLOT member.