Material Detail

Variational filtering in generated coordinates of motion

Variational filtering in generated coordinates of motion

This video was recorded at Workshop on Approximate Inference in Stochastic Processes and Dynamical Systems, Cumberland Lodge 2008. This presentation reviews a variational treatment of dynamic models that furnishes time-dependent conditional densities on the path or trajectory of a system's states and the time-independent densities of its parameters. These obtain by maximizing a variational action with respect to conditional densities, under a fixed-form assumption about their form. The action or path-integral of free-energy represents a lower-bound on the model's log-evidence or marginal likelihood required for model selection and averaging. This approach rests on formulating the optimization in generalized co-ordinates of motion. The resulting scheme can be used for on-line Bayesian inversion of nonlinear dynamic causal models and is shown to outperform existing approaches, such as Kalman and particle filtering. Furthermore, it provides for dual and triple inference on a system's states, parameters and hyperparameters using exactly the same principles. Free-form (Variational filtering) and fixed form (Dynamic Expectation Maximization) variants of the scheme will be demonstrated using simulated (bird-song) and real data (from hemodynamic systems studied in neuroimaging).

Quality

  • User Rating
  • Comments
  • Learning Exercises
  • Bookmark Collections
  • Course ePortfolios
  • Accessibility Info

More about this material

Comments

Log in to participate in the discussions or sign up if you are not already a MERLOT member.