Material Detail

Essentials of Probability and Statistical Inference IV

Essentials of Probability and Statistical Inference IV

Introduces the theory and application of modern, computationally-based methods for exploring and drawing inferences from data. Covers re-sampling methods, non-parametric regression, prediction, and dimension reduction and clustering. Specific topics include Monte Carlo simulation, bootstrap cross-validation, splines, local weighted regression, CART, random forests, neural networks, support vector machines, and hierarchical clustering....

Show More

Quality

  • User Rating
  • Comments
  • Learning Exercises
  • Bookmark Collection (1) Bookmark Collections
  • Course ePortfolios
  • Accessibility Info

More about this material

Comments

Log in to participate in the discussions or sign up if you are not already a MERLOT member.