Material Detail

Abstract Algebra II

Abstract Algebra II

This course is a continuation of Abstract Algebra I: the student will revisit structures like groups, rings, and fields as well as mappings like homomorphisms and isomorphisms. The student will also take a look at ring factorization, general lattices, and vector spaces. Later this course presents more advanced topics, such as Galois theory - one of the most important theories in algebra, but one that requires a thorough understanding of much of the content we will study beforehand. Upon successful completion of this course, students will be able to: Compute the sizes of finite groups when certain properties are known about those groups; Identify and manipulate solvable and nilpotent groups; Determine whether a polynomial ring is divisible or not and divide the polynomial (if it is divisible); Determine the basis of a vector space, change bases, and manipulate linear transformations; Define and use the Fundamental Theorem of Invertible Matrices; Use Galois theory to find general solutions of a polynomial over a field. (Mathematics 232)


  • User Rating
  • Comments
  • Learning Exercises
  • Bookmark Collections
  • Course ePortfolios
  • Accessibility Info

More about this material


Log in to participate in the discussions or sign up if you are not already a MERLOT member.