

Section 3.1 CONVERGENCE

Definition 1 A **sequence** of real numbers (or a sequence in \mathbb{R}) is a function whose domain is \mathbb{N} and whose range is a subset of \mathbb{R} .

If x is a sequence in $\mathbb{R} \Rightarrow x : \mathbb{N} \rightarrow \mathbb{R}$ with $x(n) = x_n$ for each $n \in \mathbb{N}$. We denote it by

$$x = (x_n)_{n \in \mathbb{N}} = (x_n)_{n=1}^{\infty} = (x_1, x_2, x_3, \dots) = (x_n).$$

Example 2 The sequence $(\frac{(-1)^n}{n})_{n=1}^{\infty} =$

Definition 3 A sequence $(x_n)_{n \in \mathbb{N}}$ **eventually** has a certain property if $\exists n_0 \in \mathbb{N}$ s.t.

$$(x_n)_{n \geq n_0} =$$

has this property.

Example 4 The sequence $(100, -5, \pi, 1, 0, 6, 13, 2, 4, 8, 16, 32, 64, \dots)$ is eventually what? Why?

Definition 5 For $x \in \mathbb{R}$ and $\varepsilon > 0$, the open interval

$$(x - \varepsilon, x + \varepsilon) = \{y \in \mathbb{R} : |y - x| < \varepsilon\}$$

center at x of radius ε is a $(\varepsilon-)$ **neighborhood** of x .

Example 6 Let $x = 1$, sketch the neighborhood of x in \mathbb{R} for $\varepsilon = .5$ and $\varepsilon = 2$.

(Sec 3.1 cont.)

In Calculus, we learned that $\lim_{n \rightarrow \infty} \frac{1}{n} = 0$ (i.e., the sequence $(\frac{1}{n})_{n \in \mathbb{N}}$ converges to 0). How does the nbh. of 0 relate to the terms of the sequence $(\frac{1}{n})_{n \in \mathbb{N}}$?

Definition 7 *The sequence $(x_n)_{n \in \mathbb{N}}$ **converges** to a real number x (or has limit x) if \forall nbh. U of x , the sequence $(x_n)_{n \in \mathbb{N}}$ is eventually in U .*

Definition 8 *(a proposition that is often viewed as $\langle \text{Def} \rangle$)*

A sequence $(x_n)_{n \in \mathbb{N}}$ is said to converge to $x \in \mathbb{R} \iff$

$$\begin{aligned} \forall \varepsilon > 0 \exists n_0 \in \mathbb{N} \text{ s.t. for all } n \in \mathbb{N}, n > n_0 \Rightarrow |x_n - x| < \varepsilon, \\ \text{or } \forall \varepsilon > 0 \exists n_0 \in \mathbb{N} \text{ s.t. for all } n \in \mathbb{N}, n \geq n_0 \Rightarrow |x_n - x| < \varepsilon. \end{aligned}$$

Notation 9 *If $(x_n)_{n \in \mathbb{N}}$ converges to x , then x is called the **limit** of the seq. $(x_n)_{n \in \mathbb{N}}$, and we write*

$$\lim_{n \rightarrow \infty} x_n = x, \lim x_n = x, \text{ or } x_n \rightarrow x.$$

Definition 10 *A seq. that is not convergent is **divergent**.*

(Sec 3.1 cont.)

Problem 11 *Prove that*

$$\lim_{n \rightarrow \infty} \frac{1}{n^3} = 0.$$

$\langle Pf \rangle :$

(Sec 3.1 cont.)

Problem 12 *Prove that*

$$\lim_{n \rightarrow \infty} \frac{n^2 + 1}{2n^2 + 5} = \frac{1}{2}.$$

$\langle Pf \rangle :$

(Sec 3.1 cont.)

Exercise 13 *Given distinct points in \mathbb{R} , can we always separate them by **disjoint** nbh.s?*

Lemma 14 *If $x, y \in \mathbb{R}$ with $x \neq y$*

$\implies \exists$ neighborhoods U of x and V of y s.t. $U \cap V = \emptyset$.

$\langle Pf \rangle$: visualize your strategy first:

(Sec 3.1 cont.)

Theorem 15 *If a sequence converges*

\Rightarrow its limit is unique.

$\langle Pf \rangle$: visualize your strategy first:

(Sec 3.1 cont.)

Limit Does Not Always Exist (Review your notes in MATH 355)

Note The sequence $(x_n)_{n \in \mathbb{N}}$ in \mathbb{R} does not converge
 $\iff \lim x_n \neq x$ for all $x \in \mathbb{R}$

$\lim x_n \neq x$
 $\iff \exists \text{nbh. } U \text{ of } x \text{ s.t. the sequence } (x_n) \text{ is not eventually in } U$
 $\iff \exists \text{nbh. } U \text{ of } x \text{ s.t. } \forall n_0 \in \mathbb{N}, \exists n \geq n_0 \text{ s.t. } x_n \notin U$
 $\iff \exists \text{nbh. } U \text{ of } x \text{ s.t. the sequence } (x_n)_{n \in \mathbb{N}} \text{ is **frequently outside** of } U.$
 $\iff (\text{the negation of Definition 8}) \exists \varepsilon > 0 \text{ s.t. } \forall n_0 \in \mathbb{N}, \exists n \in \mathbb{N}, n \geq n_0 \text{ with } |x_n - x| \geq \varepsilon$

Read Other Techniques for Convergence in p.42-43.

Problem 16 *Prove: The sequence $(x_n) = ((-1)^n)$ is divergent.*